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This paper deals with the nonlinear oscillations of a particle which moves on a rotating

parabola. An analytic approximate technique, namely optimal homotopy asymptotic

method (OHAM) is employed to propose an analytic approach to solve nonlinear

oscillations. The validity of the OHAM is independent on whether or not there exist

provides us with a convenient way to optimally control the convergence of the

approximate solutions. An example is given and the results reveal that this procedure is

very effective, simple and accurate. This paper demonstrates the general validity and

the great potential of the OHAM.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The nonlinear problems are more difficult to solve than the linear ones. There exist some well-known analytical
approaches applicable for nonlinear problems, such as the harmonic balance method [1], the multiple scales method [2],
the Adomian decomposition method [3], the modified Lindstedt–Poincaré methods [4–6], the variational iteration method
[7,8], the energy balance method [9], the d method [10], or the homotopy perturbation method [11,12]. All of the above
mentioned methods work very well for weakly nonlinear mechanical systems and some of them work even for strongly
nonlinear problems.

In recent years, a growing interest towards the application of the homotopy techniques in nonlinear and strongly
nonlinear problems has appeared in engineering practice. In 1992, Liao employed the basic ideas of the homotopy in
topology to propose a general analytic method for nonlinear problems, namely the homotopy analysis method [13]. This is
in essence quite different from perturbation techniques. The HAM provides great freedom to use different base functions to
express solutions of a nonlinear problem so that one can approximate a nonlinear problem more efficiently by means of
base functions. This method has been successfully applied to solve many types of nonlinear problems [14–19].

Different from Liao’s method, the homotopy perturbation method (HPM) proposed by He in 1998 [20] is in fact a new
perturbation technique coupled with the homotopy technique. This method was also successfully applied in solving many
types of nonlinear problems [21–23].
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In this paper, a different homotopy approach, namely the optimal homotopy asymptotic method (OHAM) is proposed to
solve nonlinear problems. The efficiency of our procedure starts from the construction and the determination of the
auxiliary function. Moreover, this method uses the principle of minimal sensitivity in order to achieve accurate results. The
proposed method does not require a small parameter in the equation and provides a convenient way to optimally control
the convergence of the solution.

Let us consider a nonlinear ODE of the form:

€X ðtÞþk2XðtÞ ¼ f ðXðtÞ; _X ðtÞ; €X ðtÞÞ (1)

where the dot denotes the derivative with respect to time, k is a constant, f is in general a nonlinear term. The initial
conditions are

Xð0Þ ¼ a; _X ð0Þ ¼ 0 (2)

where a is the amplitude of the oscillations. Note that it is unnecessary to assume the existence of any small or large
parameter in Eq. (1). Thus, the proposed approach is rather general [24–29].
2. Formulation and solution approach

Eq. (1) describes a system oscillating with an unknown period T. We switch to a scalar time t¼ 2pt=T ¼Ot. Under the
transformations:

t¼Ot;XðtÞ ¼ axðtÞ (3)

the original Eq. (1) becomes

O2x00ðtÞþk2xðtÞ ¼ f ðaxðtÞ; aOx0ðtÞ; aO2x00ðtÞÞ
a

(4)

and the initial conditions become

xð0Þ ¼ 1; x0ð0Þ ¼ 0 (5)

where the prime denotes the derivative with respect to t.
By the homotopy technique, we construct a homotopy in a more general form:

Hðfðt; pÞ;hðt;pÞÞ ¼ ð1� pÞLðfðt; pÞÞ � hðt; pÞN½fðt; pÞ;Oðl; pÞ� ¼ 0 (6)

where L is a linear operator:

Lðfðt; pÞÞ ¼O2
0

q2fðt; pÞ
qt2

þfðt; pÞ
" #

(7)

while N is a nonlinear operator:

N½fðt;pÞ;Oðl; pÞ� ¼O2
ðl; pÞ

q2fðt; pÞ
qt2

þðk2þlÞfðt; pÞ � 1

a
f ðafðt; pÞ; aOðl; pÞ qfðt; pÞ

qt ; aO2
ðl; pÞ

q2fðt; pÞ
qt2

� plfðt; pÞ (8)

where pA[0,1] is the embedding parameter, h(t,p) is an auxiliary function so that h(t,0)=0, h(t,p)a0 for pa0, l is an
arbitrary parameter and O0 will be given later. From Eqs. (2) and (3) we obtain the initial conditions:

fð0; pÞ ¼ 1;
qfðt; pÞ

qt t ¼ 0 ¼ 0j (9)

Obviously when p=0 and 1 it holds:

fðt;0Þ ¼ x0ðtÞ;fðt;1Þ ¼ xðtÞ;Oð0Þ ¼O0;Oð1Þ ¼O (10)

where x0(t) is an initial approximation of x(t). Therefore, as the embedding parameter p increases from 0 to 1, f(t,p) varies
from the initial approximation x0(t) to the solution x(t), so does O(p) from the initial approximation O0 to the exact
frequency O.

Expanding f(t,p) and O(p) in series with respect to the parameter p, one has, respectively

fðt; pÞ ¼ x0ðtÞþpx1ðtÞþp2x2ðtÞþ � � � (11)

OðpÞ ¼O0þpO1þp2O2þ � � � (12)
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If the initial approximation x0(t) and the auxiliary function h(t,p) are properly chosen so that the above series converges at
p=1, one has

xðtÞ ¼ x0ðtÞþx1ðtÞþx2ðtÞþ � � � (13)

O¼O0þO1þO2þ � � � (14)

Notice that the series (11) and (12) contain the auxiliary function h(t,p) which determines their convergence regions.
The results of the mth-order approximations are given by

xðtÞ � x0ðtÞþx1ðtÞþ � � � þxmðtÞ (15)

O ¼O0þO1þ � � � þOm (16)

We propose that the auxiliary function h(t,p) to be of the form

hðt; pÞ ¼ pK1þp2K2þ � � � þpmKmðtÞ (17)

where K1, K2,y,Km�1 can be constants and the last value Km(t) can be a function depending on the variable t.
Substituting Eqs. (11) and (12) into Eq. (8) yields

Nðf;OÞ ¼N0ðx0;O0; a; lÞþpN1ðx0; x1;O0;O1; a; lÞþp2N2ðx0; x1; x2;O0;O1; a; lÞþ � � � (18)

If we substitute Eqs. (18) and (17) into Eq. (6) and we equate to zero the coefficients of various powers of p, we obtain the
following linear equations:

Lðx0Þ ¼ 0; x0ð0Þ ¼ 1; x0ð0Þ ¼ 0 (19)

LðxiÞ � Lðxi�1Þ �
Xi

j ¼ 1

KjNi�jðx0; x1; . . . ; xi�j;O0;O1; . . . ;Oi�j; a; lÞ ¼ 0; xið0Þ ¼ xi
0 ð0Þ ¼ 0; i¼ 1;2; . . . ;m� 1

LðxmÞ � Lðxm�1Þ �
Xm�1

j ¼ 1

KjNm�1�j � KmðtÞN0 ¼ 0; xmð0Þ ¼ xm
0 ð0Þ ¼ 0 (20)

Note that Ok can be determined avoiding the presence of secular terms in Eq. (20).
The frequency O depends upon the arbitrary parameter l and we apply the so-called ‘‘principle of minimal sensitivity’’

[30] in order to fix the value of l. We do this imposing that

dO
dl
¼ 0 (21)

This principle of the minimal sensitivity appears for the first time in the quantum field theory, lf4 theory or quantum
chromodynamics [30]. In its original formulation a Lagrangian density L which is not exactly solvable, is interpolated with
a solvable Lagrangian L0ðlÞ depending upon one (ore more) parameter l : Ld ¼L0ðlÞþdðL� L0ðlÞÞ, d being a parameter.
We notice that the interpolation of the full Lagrangian with the solvable one, L0ðlÞ, brings an artificial dependence upon
the arbitrary parameter l. Such dependence, which would vanish if all perturbative orders were calculated, can be made
weaker to a finite perturbative order, by requiring some physical observable P to be locally insensitive to l, i.e. qP=ql¼ 0. In
the above application this physical observable P is in fact the frequency O. This condition is known as the principle of
minimal sensitivity and is normally seen to improve the convergence to the exact solution.

At this moment, the mth-order approximation given by Eq. (15) depends on the parameters (functions) K1, K2,y,Km. The
constants K1, K2,y,Km�1 and those constants which eventually appear in the expression of Km(t), can be identified via
various methods, such as the least square method, the Galerkin method, the collocation method or by minimizing the
square residual error.

Our procedure contains the auxiliary function h(t,p), which provides us with a simple way to adjust and control the
convergence of solution. It is very important to properly choose the last function Km(t), which appears in the mth-order
approximation (15).

Unlike other homotopy methods, such as HAM or HPM, in the proposed procedure (OHAM) the construction of
homotopy is quite different. In the frame of OHAM the linear operator L is well defined by Eq. (7) and the initial
approximation is rigorously determined from Eq. (19), while in other homotopy procedures such as HAM these ones are
arbitrarily chosen. Instead of an infinite series (as is the case of HAM), the OHAM searches for only a few terms (mostly two
or three terms). The way to ensure the convergence in OHAM is quite different and more rigorous. Unlike other homotopy
procedures, OHAM ensure a very rapid convergence since it needs only two iterations for achieving a very accurate
solution. This is in fact the true power of the method. OHAM does not need a recurrence formula as other homotopy
procedures such as HAM does. OHAM is an iterative procedure which converges to the exact solution after only two
iterations. Iterations are performed in a very simple manner by identifying some coefficients. OHAM does not need high-
order approximations, as HAM does. OHAM does not use the rules established in the frame of HAM, it is a self-sustained
method which has no ‘‘open questions’’ as other homotopy procedures. OHAM does not need the restrictive condition
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A(1)=1 as HAM does. Finally, OHAM provides an analytic solution for complicated nonlinear problems expressed on only
two rows, unlike other homotopy procedures which need few pages to express an analytic solution.

3. The motion of a particle on a rotating parabola

We introduce the basic ideas of the proposed method by considering the motion of a particle on a rotating parabola, by
considering the following nonlinear differential equation, mentioned by Nayfeh and Mook in [1]:

ð1þ4q2X2Þ
d2X

dt2
þLXþ4q2 dX

dt

� �2

X ¼ 0 (22)

with the boundary conditions:

Xð0Þ ¼ a;
dX

dt
ð0Þ ¼ 0 (23)

where q and L are known constants and need not be small.
Under the transformations (3), Eqs. (22) and (23) become

O2x00 þo2
0xþ4q2a2O2

ðx2x00 þx _x2
Þ ¼ 0 (24)

respectively

xð0Þ ¼ 1; x0ð0Þ ¼ 0 (25)

where L¼o2
0 and 0 ¼ d=dt.

The operators (7) and (8) are, respectively

Lðfðt; pÞÞ ¼O2
0½f
00ðt; pÞþfðt; pÞ� (26)

N½fðt; pÞ;Oðt; pÞ� ¼O2
ðpÞf00ðt; pÞþðo2

0þlÞfðt; pÞþ4q2a2O2
½f2
ðt; pÞf00ðt; pÞþfðt; pÞf

02
ðt; pÞ� � plfðt; pÞ (27)

where f and O are given by Eqs. (11) and (12), respectively, and l is an unknown parameter. From Eqs. (19) and (20),
(m=2), we obtain the following three equations:

O2
0ðx0
00 þx0Þ ¼ 0; x0ð0Þ ¼ 1; x0ð0Þ ¼ 0 (28)

O2
0ðx1
00 þx1Þ �O2

0ðx0
00 þx0Þ � K1½O

2
0x0
00 þðo2

0þlÞx0þ4q2a2O2
0ðx0x0

00 þx
02
0 x0Þ� ¼ 0; x1ð0Þ ¼ x1

0 ð0Þ ¼ 0 (29)

O2
0ðx2
00 þx2Þ �O2

0ðx1
00 þx1Þ � K1f2O0O1x0

00 þO2
0x1
00 þðo2

0þlÞx1þ4q2a2½O2
0ð2x0x0

00 x1þx2
0x1
00 þ2x0x0

0 x1
0 þ2x0x0

0 x1
0

þx
02
0 x1Þþ2O0O1ðx

2
0x0
00 þx

02
0 x0Þ� � lx0g � K2ðtÞ½O2

0x0
00 þðo2

0þlÞx0þ4q2a2O2
0ðx

2
0x0
00 þx

02
0 x0Þ� ¼ 0; x2ð0Þ ¼ x2

0 ð0Þ ¼ 0

(30)

Eq. (28) has the following solution:

x0ðtÞ ¼ cos t (31)

If this result is substituted into Eq. (29) and assuming that K1=C1=constant, we obtain the following equation:

O2
0ðx1
00 þx1Þ � C1½ðo2

0þl�O2
0 � 2q2a2O2

0Þcos t� 2q2a2O2
0cos 3t� ¼ 0; x1ð0Þ ¼ x1

0 ð0Þ ¼ 0 (32)

where C1 is an unknown constant at this moment. Avoiding the presence of a secular term needs:

O2
0 ¼

o2
0þl

1þ2q2a2
(33)

with this requirement, the solution of Eq. (32) is

x1ðtÞ ¼
1

4
C1q2a2ðcos 3t� cos tÞ (34)

If we substitute Eqs. (31), (33) and (34) into Eq. (30), we obtain the equation in x2:

O2
0ðx2
00 þx2Þþ

2C1q2a2ðo2
0þlÞ

1þ2q2a2
cos 3tþC1

C1q4a4ðo2
0þlÞ

2ð1þ2q2a2Þ
þ2O0O1ð1þ2q2a2Þþl

� �
cos t

8><
>:

þ
ðo2

0þlÞC1q2a2ð3q2a2þ16Þ

2ð1þ2q2a2Þ
þ2O0O1q2a2

� �
cos 3tþ

9C1q4a4ðo2
0þlÞ

2ð1þ2q2a2Þ
cos 5t

�

þK2ðtÞ
2q2a2ðo2

0þlÞ
1þ2q2a2

cos 3t
� �

¼ 0; x2ð0Þ ¼ x2
0 ð0Þ ¼ 0 (35)
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No secular term in x2(t) requires that

2O0O1 ¼ �
l

1þ2q2a2
�

C1q4a4ðo2
0þlÞ

2ð1þ2q2a2Þ
2

(36)

From Eqs. (36) and (14), we obtain the frequency in the form

O¼O0 �
l

O0ð1þ2q2a2Þ
�

C1q4a4O0

4ð1þ2q2a2Þ
(37)

where O0 is given by Eq. (33).
The parameter l can be determined applying the ‘‘principle of minimal sensitivity’’ (21) and thus we obtain

l¼
C1o0q4a4

2þ4q2a2 � C1q4a4
(38)

This result is substituted into Eq. (37) and we have

O¼
o0

1þ2q2a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2q2a2 �

1

2
C1q4a4

r
(39)

Substituting Eqs. (37)–(39) into Eq. (35), we obtain

x2
00 þx2þ2C1q2a2 cos 3tþ

C2
1 q2a2ð5q4a4þ7q2a2þ2Þ

1þ2q2a2
cos 3tþ 9

2
C2

1 q4a4 cos 5tþ2K2ðtÞq2a2 cos 3t¼ 0

x2ð0Þ ¼ x2
0 ð0Þ ¼ 0 (40)

There are many possibilities to choose the function K2(t). The convergence of the solution x2ðtÞ and consequently the
convergence of the approximate solution ~xðtÞ depend on the auxiliary function K2(t). Basically, the shape of K2(t) must
follow the terms appearing in Eq. (35), which are cos t, cos 3t, cos 5t (odd-order harmonics). Therefore we try to choose
K2(t) so that in Eq. (35) the product

K2
2q2a2ðo2

0þlÞ
1þ2q2a2

cos 3t
� �

be of the same shape with the other terms (a combination of functions cos t, cos 3t, cos 5t,y).
In other applications, such as those presented in [26–28], the function K2(t) (or h(t,p)) could be chosen as

exponential function, polynomial function and so on, depending on the shape of the terms already present in the
specific iteration.

All three cases presented in the paper demonstrate the importance of the function K2(t) on the accuracy of the solution.
In the same time, a bigger number of constants in K2(t) lead to a better accuracy of the results. If the error obtained using a
certain K2(t) is unsatisfactory, one can choose other shapes for this function.

We will consider three cases:
Case A: We consider the function K2 of the form

K2ðtÞ ¼ C2
0 (41)

where C2
0 is a constant.

Substituting Eq. (41) into Eq. (40), we obtain the equation in x2:

x2
00 þx2þ 2ðC1þC2

0 Þq2a2þ
C2

1 q2a2ð5q4a4þ7q2a2þ2Þ

1þ2q2a2

� �
cos 3tþ 9

2
C2

1 q4a4 cos 5t¼ 0; x2ð0Þ ¼ x2
0 ð0Þ ¼ 0 (42)

The solution of Eq. (42) becomes

x2ðtÞ ¼
C1þC2

0

4
þ

C2
1 q2a2ð5q4a4þ7q2a2þ2Þ

8ð1þ2q2a2Þ

� �
ðcos 3t� cos tÞþ 3

16
C2

1 q4a4ðcos 5t� cos tÞ (43)

The second-order approximate solution is

xðtÞ ¼ x0ðtÞþx1ðtÞþx2ðtÞ

where x0, x1 and x2 are given by Eqs. (31), (34) and (43). Using the transformations (3), the second-order approximate
solution of Eq. (22) becomes

xðtÞ ¼ A cosOtþB cos 3OtþC cos 5Ot (44)

where O is given by Eq. (39) and

A¼ a�
2C1þC2

0

4
q2a3 �

C2
1 q2a3ð16q4a4þ17q2a2þ4Þ

16ð1þ2q2a2Þ
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B¼
2C1þC2

0

4
q2a3þ

C2
1 q2a3ð5q4a4þ7q2a2þ2Þ

8ð1þ2q2a2Þ

C ¼
3

16
C2

1q4a5 (45)

Case B: We consider the function K2(t) if the form

K2ðtÞ ¼ C2þC3 cos 2tþC4 cos 4t (46)

where C2, C3 and C4 are constants.
Substituting Eq. (46) into Eq. (40) and avoiding the presence of a secular term, we obtain

C4 ¼ � C3 (47)

respectively

x2
00 þx2þ 2ðC1þC2Þq

2a2þ
C2

1 q2a2ð5q4a4þ7q2a2þ2Þ

1þ2q2a2

� �
cos 3tþ 9

2
C2

1 q4a4þC3q2a2

� �
cos 5t� C3q2a2 cos 7t¼ 0

x2ð0Þ ¼ x2
0 ð0Þ ¼ 0 (48)

With these requirements, the solution of Eq. (48) becomes

x2ðtÞ ¼
C1þC2

4
q2a2þ

C2
1 q2a2ð5q4a4þ7q2a2þ2Þ

8ð1þ2q2a2Þ

� �
ðcos 3t� cos tÞþ 3

16
C2

1 q4a4þ
1

24
C3q2a2

� �
ðcos 5t� cos tÞ

�
1

48
C3q2a2ðcos 7t� cos tÞ (49)

The second-order approximate solution in this case is

x ¼ ~A cosOtþ ~B cos 3Otþ ~C cos 5Otþ ~D cos 7Ot (50)

where O is given by Eq. (39) and the coefficients are

~A ¼ a�
2C1þC2

4
q2a3 �

C2
1 q2a3ð16q4a4þ17q2a2þ4Þ

16ð1þ2q2a2Þ
�

1

48
C3q2a3

~B ¼
2C1þC2

4
q2a3þ

C2
1 q2a3ð5q4a4þ7q2a2þ2Þ

8ð1þ2q2a2Þ

~C ¼
3

16
C2

1 q4a5þ
1

24
C3q2a3

~D ¼ �
1

48
C3q2a3 (51)

Case C: We consider the function K2(t) of the form

K2ðtÞ ¼ C�2þC�3 cos 2tþC�4 cos 4tþC�5 cos 6tþC�6 cos 8t (52)

where C�2, C�3, C�4, C�5 and C�6 are constants.
Substituting Eq. (52) into Eq. (40), we obtain

C�4 ¼ � C�3 (53)

x2ðtÞ ¼
2C1þ2C�2þC�5

8
q2a2þ

C2
1 q2a2ð5q4a4þ7q2a2þ2Þ

8ð1þ2q2a2Þ

� �
ðcos 3t� cos tÞþ 3

16
C2

1 q4a4þ
1

24
ðC�3þC�6Þq

2a2

� �
ðcos 5t

� cos tÞþ 1

48
C�3q2a2ðcos t� cos 7tÞþ 1

80
C�5q2a2ðcos 9t� cos tÞþ

C�6
120

q2a2ðcos 11t� cos tÞ (54)

The second-order approximate solution of Eq. (22) becomes

xðtÞ ¼ A cosO tþB cos 3OtþC cos 5OtþD cos 7OtþE cos 9OtþF cos 11Ot (55)

where

A ¼ a�
q2a3

240
ð120C1þ60C�2þ5C�3þ33C�4þ12C�5Þ �

C2
1 q2a3ð16q4a4þ17q2a2þ4Þ

16ð1þ2q2a2Þ

B ¼
4C1þ2C�2þC�4

8
q2a3þ

C2
1 q2a3ð5q4a4þ7q2a2þ2Þ

8ð1þ2q2a2Þ
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C ¼
C�3þC�5

24
q2a3þ

3

16
C2

1 q4a5

D ¼ �
1

48
C2

3 a3

E ¼
1

80
C�4q2a3

F ¼
1

120
C�5q2a3 (56)

3.1. Numerical examples

We will show that the error of the solutions decreases when the number of terms in the auxiliary function h(t,p)
increases. In Eqs. (22) and (23), we consider L¼o0 ¼ 1, a=1 and two cases for q in every of the cases A, B and C. The
constants Ci are obtained using the least square method.

(a) For q=1 in the case A, it is obtained

C1 ¼ � 0:401483291;C2
0 ¼ � 0:065781508 (57)

The second-order approximate solution (44) becomes in this case

xðtÞ ¼ 1:092937297 cosOt � 0:123160203 cos 3Otþ0:030222906 cos 5Ot (58)

where O is obtained from Eq. (39): O=0.596353888.
(b) For q=1 in the case B, it is obtained

C1 ¼ � 0:398431527;C2 ¼ � 0:052485317;C3 ¼ 0:0341786762 (59)

xðtÞ ¼ 1:089257032 cosOt � 0:119734278 cos 3Otþ0:031189301 cos 5Ot � 0:00712055 cos 7Ot (60)

where O=0.596211722.
(c) For q=1 in the case C, we obtain the following results:

C1 ¼ � 0:395753003;C�2 ¼ � 0:24453992;C�3 ¼ 0:396618201;C�4 ¼ � 0:396618201;

C�5 ¼ 0:534493194;C�6 ¼ � 0:497490133 (61)

xðtÞ ¼ 1:08140204 cosOt � 0:100837908 cos 3Otþ0:025163334 cos 5Ot
� 0:008262879 cos 7Otþ0:006681164 cos 9Ot � 0:004145751 cos 11Ot (62)

where O=0.596087918.
(d) For q=2 in the case A we obtain

C1 ¼ � 0:167434521;C2
0 ¼ � 0:02382096 (63)

xðtÞ ¼ 1:081827345 cosOt � 0:165930301 cos 3Otþ0:084102956 cos 5Ot (64)

where O=0.357278398.
(e) For q=2 in the case B it is obtained

C1 ¼ � 0:164357411;C2 ¼ 0:017447955;C3 ¼ � 0:073610524 (65)
Fig. 1. Comparison between the approximate results in case (a), Eq. (58) and numerical results of Eq. (22) for L¼o0 ¼ a¼ q¼ 1: numerical

solution; _ _ _ _ approximate solution.
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Fig. 2. Comparison between the approximate results in case (b), Eq. (60) and numerical results of Eq. (22) for L¼o0 ¼ a¼ q¼ 1: numerical

solution; _ _ _ _ approximate solution.

Fig. 3. Comparison between the approximate results in case (c), Eq. (62) and numerical results of Eq. (22) for L¼o0 ¼ a¼ q¼ 1: numerical

solution; _ _ _ _ approximate solution.

Fig. 4. Comparison between the approximate results in case (d), Eq. (64) and numerical results of Eq. (22) for L¼o0 ¼ a¼ 1, q¼ 2: numerical

solution; _ _ _ _ approximate solution.
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xðtÞ ¼ 1:071279364 cosOt � 0:146185231 cos 3Otþ0:068771659 cos 5Otþ0:00613421 cos 7Ot (66)

where O=0.356852829.
(f) For q=2 in the case C it is obtained

C1 ¼ � 0:16124603;C�2 ¼ � 0:103086948;C�3 ¼ 0:254864679;C�4 ¼ � 0:254864679;C�5 ¼ 0:236002415;C�6 ¼
� 0:345719606 (67)

xðtÞ ¼ 1:1067914118 cosOt � 0:148687186 cos 3Otþ0:062858358 cos 5Ot
� 0:021238723 cos 7Otþ0:01180012 cos 9Ot � 0:011523986 cos 11Ot (68)

where O=0.356422004.
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Fig. 5. Comparison between the approximate results in case (e), Eq. (66) and numerical results of Eq. (22) for L¼o0 ¼ a¼ 1, q¼ 2: numerical

solution; _ _ _ _ approximate solution.

Fig. 6. Comparison between the approximate results in case (f), Eq. (68) and numerical results of Eq. (22) for L¼o0 ¼ a¼ 1, q¼ 2: numerical

solution; _ _ _ _ approximate solution.

V. Marinca, N. Heris-anu / Journal of Sound and Vibration 329 (2010) 1450–14591458
It is easy to verify the accuracy of the obtained solutions if we graphically compare these analytical solutions with the
numerical ones. Figs. 1–6 show the comparison between the present solutions and the numerical integration results
obtained by a fourth-order Runge–Kutta method.

It can be seen from Figs. 1–6 that the solutions obtained by OHAM are nearly identical with the solutions obtained by a
fourth-order Runge–Kutta method. Moreover, the analytical solutions obtained by our procedure prove to be more
accurate along with an increased number of terms in the auxiliary function h(t,p).
4. Conclusions

In this paper, the optimal homotopy asymptotic method (OHAM) is employed to propose a new analytic approximate
solution for some nonlinear oscillations. The validity of the method is illustrated on the motion of a particle on a rotating
parabola. Our procedure is valid even if the nonlinear equation does not contain any small or large parameters.

Our construction of homotopy is different from classical HAM, especially referring to the parameter l (determined using
the principle of minimal sensitivity), the auxiliary function h(t,p), the operator L (unlike HAM the linear operator and the
initial approximation are not arbitrarily chosen) and the presence of some constants C1,C2,y which ensure a fast
convergence of the solution. The examples presented in this paper lead to the conclusion that the accuracy of the obtained
results is growing along with increasing the number of constants in the auxiliary function. Unlike HAM, which employ the
so-called _-curves in order to ensure the convergence of the solution using a convergence-control parameter _, the OHAM
provides us with a simple and rigorous way to control and adjust the convergence of a solution through the auxiliary
functions h(t,p) involving a number of constants Ci which are optimally determined. Unlike HAM which needs recurrence
formulas, OHAM is an iterative procedure and iterations are performed in a very simple manner by identifying some
coefficients and therefore very good approximations are obtained in few terms. Actually the capital strength of OHAM is its
fast convergence, since after only two iterations it converges to the exact solution, which proves that this method is very
efficient in practice.
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In this work we proposed a new approach, and this version of the method proves to be very rapid and effective and this
is proved by comparing the solutions obtained through the proposed method with the solutions obtained via numerical
simulations. This paper shows one step in the attempt to develop a new nonlinear analytical technique in the absence of
small or large parameters.
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